
Orakl Network

Bisonai Labs

Abstract

The quantity of decentralized web3 applications is grow-
ing, accompanied by an increase in their complexity. Many
of these applications now require trustworthy blockchain
oracles to unlock their full potential. Oracles therefore be-
came one of the most important infrastructure blocks for
any blockchain ecosystem. There are famous reliable or-
acles that secure billions of dollars, however they support
only a limited set of blockchains, and rarely get challenged
by new oracle solutions. This leads to lack of a competition
between blockchain oracles, as well as to an unequitable
centralized state of blockchain infrastructure that concen-
trates power in the hands of a few.

This paper presents Orakl Network, a highly customiz-
able blockchain oracle for EVM-compatible chains. The
goal of the Orakl Network is to foster greater competitive-
ness among established blockchain oracle players. It starts
by providing oracle solution tailored to a Klaytn ecosystem.
The Orakl Network’s solution supports both Klaytn’s main-
net and service chains. The initial set of oracle services
supported by Orakl Network are: Verifiable Random Func-
tion, Request-Response and Data Feed.

1. Introduction

The blockchain technology has revolutionized the way
we think about trust and transparency in digital transactions.
The blockchain is an isolated system without access to other
data sources with abundant information like the internet for
example. Blockchain’s consensus ensures that all accepted
transactions are valid, and submitted only by rightful ac-
count owners or smart contracts. This is possible to achieve
due to deterministic nature of blockchain behavior and a full
observability of its state. Over the time, web3 applications
grew in their complexity and their need for an additional
source of data besides the blockchain state grew as well.
This led to the advent of input oracles that try to solve one
of the biggest challenges facing blockchain technology: in-
tegration of off-chain data into on-chain transactions. Con-
sequently, the presence of reliable input oracle solutions has
enhanced the appeal of blockchains, empowering applica-
tion builders and bolstering the competitive standing com-

pared to blockchains without such oracles.
The goal of input oracles is to bring an off-chain data into

a blockchain state in a trustful and verifiable manner. Any-
body can submit off-chain data to on-chain state, however,
the data transition alone is not sufficient enough for devel-
opers to integrate it. Web3 applications that integrate input
oracle rely on a correctness of data provided and often use
it in algorithms that secure unfathomable sums of wealth.
Developers who choose to build an application requiring an
input oracle on a blockchain lacking a trustful and reliable
oracle face the challenge of creating their own oracle specif-
ically for their application. This decision puts them at a dis-
advantage compared to similar applications that don’t need
to build their own input oracle. Additionally, it makes them
more susceptible to blockchain oracle attacks, which in turn
reduces the appeal of their application to potential users.

In this paper we introduce Orakl Network, a highly cus-
tomizable blockchain oracle for EVM-compatible chains.
Our goal is to bring more competition among established
blockchain oracle players, and help where it is needed the
most. We decided to support Klaytn blockchain at first.
Klaytn with its 1-second finality, cheap gas fees and vibrant
ecosystem is a good fit for our Orakl Network. We agreed
to implement Orakl Network to accept service fee payments
only in $KLAY and burn 50 % of them. Orakl Network
supports both Klaytn mainnet, as well as its existing and
future service chains. The initial set of oracle services sup-
ported by Orakl Network are: Verifiable Random Function,
Request-Response and Data Feed.

This paper is structured in the following way: Section 2
discuss advantages and disadvantages of various input ora-
cle solutions relevant to the design decision of Orakl Net-
work for Klaytn. Section 3 explains frequently used terms
in this paper. In the section 4, we describe the main compo-
nents and features of the Orakl Network and how they are
used to deliver trustworthy reliable data from off-chain to
on-chain. Lastly, we conclude with the section 5 where we
describe the next plans for the Orakl Network.

2. Background

The Orakl Network for Klaytn has unique requirements
that differentiate itself from other mainstream oracles as
described in the introduction section. We review relevant

1

blockchain oracles and explain their potential and disadvan-
tages that led us to building Orakl Network. We emphasize
that overall design decisions are highly relevant to Klaytn
and would most likely result in different design if we focus
on any other blockchain.

2.1. Related work

This section describes oracles that are on-boarded or in
the process of on-boarding on Klaytn.

One of the most famous blockchain oracles is Chain-
link [2]. Chainlink a decentralized oracle network that aims
to securely connect smart contracts with real-world data and
off-chain resources. It utilizes a decentralized network of
nodes, reputation systems, and multiple data sources to pro-
vide accurate and reliable data to smart contracts. Chain-
link is deployed on multiple blockchains, and is consid-
ered a leader in price feed services. Many prominent DeFi
projects, such as Synthetix, AAVE, and Trader Joe, rely
on Chainlink’s price feeds to access accurate and reliable
data for their operations and functionalities. Chainlink is
currently deployed only on Klaytn’s testnet, and requires a
special token $LINK to pay for Chainlink’s services. One
of the Orakl Network’s focus is on great user experience,
and we believe that use of a native token to pay for oracle
services is one such example.

Witnet [3] is a permissionless blockchain oracle that
aims to provide verifiable and accurate data queries in a de-
centralized manner. It runs its own dedicated blockchain,
incentivizing witnesses for honest participation. Randomly
selected, anonymous peers aggregate data from multiple
sources to establish a reliable ”truth.” Witnet provides ran-
domness generation, access to off-chain data and price feed
services. Witnet has been deployed on Klaytn’s mainnet,
but the selection of price feeds on this blockchain is very
limited.

Supra Oracles utilizes a DORA protocol [6] that was de-
signed to be resilient to Byzantine failures. The protocol
uses a novel approach called agreement distance, which al-
lows nodes to agree on a single representative value even
if some of the nodes are Byzantine. Supra Oracles services
include randomness generation [5] and price feeds. The col-
lection of price feeds deployed by Supra Oracles on Klaytn
is larger compared to Witnet, however, the feed selection
lacks relevance in Klayn ecosystem.

3. Terminology
Every blockchain oracle uses a slightly different termi-

nology to explain its design. To mitigate misunderstanding
between Orakl Network and other blockchain oracles, we
define several frequently used terms from a perspective of
the Orakl Network.

Consumer represents either an EOA (externally owned
account) that initiates a transaction that leads to interaction

with the Orakl Network, or it can denote a smart contract
itself that request a service from the Orakl Network.

Coordinator is the main Orakl Network’s smart contract
specific to every request-response data access approach. In
section 4.1, you can learn more about VRFCoordinator
and RequestResponseCoordinator.

Oracle is a single entity (also called a node operator)
that plays a role of data relayer to Orakl Network. The ora-
cle entity can be different for every Orakl Network service,
but it always must be approved before it can submit any data
to chain. Oracle is implemented as an off-chain component,
and in this paper we use terms ”oracle” and ”off-chain ora-
cle” interchangeably.

4. Design
Orakl Network consists of on-chain and off-chain com-

ponents that work together to provide off-chain data ac-
cess to on-chain consumer smart contracts. At the current
phase, Orakl Network supports two different data access ap-
proaches: request-response and immediate read.

The request-response data access approach is initiated by
a consumer smart contract, and consequently fulfilled by the
Orakl Network node operators. Consumer smart contract
can either request the Orakl Network Verifiable Random
Function service to generate provably random numbers, or
Orakl Network Request-Response service to bring any off-
chain data accessible through HTTP(S) protocol back to
blockchain. Both services are charged using Klaytn’s na-
tive token $KLAY.

The immediate read data access approach is utilized by
the Orakl Network Data Feed service which relays an off-
chain data streams to aggregator smart contracts. The data
stream is relayed by a limited set of trustworthy node op-
erators. Each node operator independently relays data to a
shared aggregator contract, creating an auditable trail that
facilitates subsequent investigations in the event of mali-
cious data submissions. All consumer smart contracts have
free access to the entire pool of relayed data streams without
any associated charges.

The rest of this section discusses in detail on-chain com-
ponents (section 4.1), off-chain components (section 4.2)
their integration for Klaytn’s mainnet, and service chains
(section 4.3).

4.1. On-chain components

Orakl Network smart contracts were designed from first
principles and with simple goals in mind: ease of use, and
high interoperability between distinct services.

We acknowledge that a very large portion of web3 de-
velopers have experienced a Chainlink oracle, and therefore
are familiar with its interface. We decided to closely follow
Chainlink’s interface for a smooth on-boarding of develop-
ers coming from Chainlink to the Orakl Network. However,

2

(a) Permanent account (b) Temporary account

Figure 1. Orakl Network’s payment option design

there are cases where we slightly diverge from Chainlink’s
interface in order to provide a better developer experience.
We highlight such cases when we describe relevant smart
contracts.

In the following subsections we discuss in detail
smart contracts related to payments (Prepayment,
Account), generation of random numbers
(VRFCoordinator), access to off-chain data
(ReqeustResponseCoordinator), and fre-
quently updated data streams (Aggregator,
AggregatorProxy).

4.1.1 Payments

The request-response data access approaches require users
to pay for its services. Payments in the Orakl Network are
handled through the Prepayment smart contract which
ensures that consumer requesting a service has account with
enough $KLAY, and transfers a service specific fee from
consumer’s account to oracle upon a successful fulfillment.
The Orakl Network implements two types of accounts: per-
manent and temporary.

Permanent account (figure 1a) is designed for fre-
quent Orakl Network users or users that want to share
the account with multiple other consumer smart contracts.
Consumer that creates the permanent account through the
Prepayment smart contract becomes an account owner.
Account owner can deposit/withdraw $KLAY from ac-
count, and update a set of smart contract consumers that can
request Orakl Network services through the account. Every
permanent account is represented by a separate Account
smart contract.

Temporary account (figure 1b) does not require con-
sumer to deploy a separate smart contract. The account is
abstracted inside of Prepayment smart contract, and with
every request, coordinator creates a new temporary account.

4.1.2 Verifiable Random Function

The Orakl Network Verifiable Random Function (VRF) [4]
is a type of cryptographic function that utilizes a public
(PK) and private key (SK) system to generate provably ran-
dom numbers. Orakl Network separates the VRF compu-
tation to on-chain and off-chain part (described at section
4.2.1). Public VRF key and its hash (keyHash) must be

registered within a VRFCoordinator, an on-chain im-
plementation of VRF computation. Private key is known
only to the off-chain VRF oracle.

VRF coordinator accepts requests from consumers, han-
dles service fees through Prepayment contract, generates
initial seed, verifies oracle submission, and concludes by
fulfilling random numbers requests. During the VRF re-
quest, coordinator contract generates a pre-seed (computed
as uint256(keccak256(abi.encode(keyHash,
sender, accId, nonce)))) from consumer request
parameters. The pre-seed is delivered with other relevant
parameters to the off-chain oracle. Then, the off-chain or-
acle produces an alpha seed by hashing a pre-seed with
block hash number of the request, and computes a VRF
hash from alpha and oracle’s VRF private key.

Once the off-chain computation is finished, oracle sub-
mits a proof pi and a VRF hash beta to the VRF coordinator
for verification. The proof pi allows coordinator holding the
public key PK to verify that beta is the correct VRF hash of
input alpha under key PK. If the verification process suc-
ceeds, VRF coordinator converts proof pi to initial random-
ness and use it to generate random values that are passed to
consumer smart contract.

4.1.3 Request-Response

The Orakl Network Request-Response service en-
ables consumer smart contracts to get an access
to off-chain data directly from chain. Consumers
can create an on-chain request and submit it to
RequestResponseCoordinator contract, an
on-chain coordinator for Request-Response service. Coor-
dinator accepts requests from consumers, handles service
fees through Prepayment contract, and concludes by
submitting the final responses by an off-chain oracle
(described at section 4.2.2).

The on-chain request metadata are serialized as Concise
Binary Object Representation (CBOR) [1]. The metadata
includes the following parameters: HTTP(S) address of an
off-chain API server, list of postprocessing functions that
are applied to the response from the API server, expected
response value data type, and a number of requested re-
sponses. Each of these parameters have an impact on the
final results submitted back to consumer smart contract.
The API server must be accessible to the off-chain oracle
while processing the request. Parsing rules must be valid
and applicable to the response generated by the API server.
The expected response value data type affects which func-
tion selector is used by the off-chain oracle for submission.
Consumers can request to receive an aggregated value com-
puted from multiple submissions by unique off-chain ora-
cles. This aggregation feature is supported only for a lim-
ited set of data types under predefined conditions that are

3

displayed in table 1.

4.1.4 Data Feed

The Orakl Network Data Feed service distills various data
sources representing the same information into a single
scalar that is then submitted to blockchain. The submission
frequency depends on data feed settings, and can be con-
trolled by either time delay, or scalar deviation with respect
to previous submissions. We aim to make Orakl Network
Data Feeds a single source of on-chain truth for important
data streams, and in order to achieve that we accept only
publicly known trustworthy off-chain oracle operators. The
access to Orakl Network Data Feed service is free of charge,
because we believe that this strategy will help to establish a
presence of Orakl Network within a larger blockchain land-
scape.

A single data feed is associated with Aggregator and
AggregatorProxy smart contracts. They are used for
aggregation of submitted scalars by individual oracles, and
to provide a user-friendly interface for consumer applica-
tions, respectively. Every data feed accepts submissions
only from a curated set of oracles. All submissions are
assigned to a round which represents a specific timespan
during which oracles are supposed to provide their latest
off-chain observations. New round can be initiated by any
oracle after the previous round aggregate becomes outdated.

Consumers can access the latest submission aggregates
when the number of submission reaches above a predefined
threshold. If a consumer needs to access historical data,
all aggregates for each historical round are easily accessible
on-chain as well.

4.2. Off-chain components

The design of Orakl Network off-chain components is
very flexible, and can be applied across all three supported
services. The main building blocks (figure 2) for each off-
chain service are: listener, worker, and reporter.

Listener and reporter are customizable reusable compo-
nents whose main purpose is to reliably catch events emit-
ted by smart contracts of interest, and successfully submit
responses back to coordinators, respectively.

Workers are different for every Orakl Network service
(details can be found at following subsections 4.2.1, 4.2.2
and 4.2.3), but they are all connected to their listeners and
reporters via designated job queues. This design eliminates
a single point of failure of individual services while allow-
ing for an easy scalability.

4.2.1 Verifiable Random Function

Every VRF oracle that wants to participate in Orakl Net-
work generates a public VRF key (PK), a private VRF key

Figure 2. Orakl Network high-level off-chain architecture

(SK) at first. Then it must be registered to on-chain VRF co-
ordinator (details at section 4.1.2). Off-chain VRF Worker
receives requests through VRF Listener that captures events
emitted by VRF coordinator. Every VRF request includes
a hash of VRF PK that determines which oracle can fulfill
the request. Oracles that do not possess corresponding VRF
SK are not able to provide such a proof pi and a hash beta
that would pass the on-chain verification process.

The oracle, who holds VRF SK that corresponds to the
requested key hash, uses it to hash the input alpha (de-
scribed at section 4.1.2) and produce a VRF hash output
beta by applying the V RFhash algorithm. This process
is deterministic and consistent, meaning that the same out-
put will be produced given the same input. Additionally,
the VRF oracle uses the VRF SK to construct a proof pi
that the output beta is the correct hash output, by apply-
ing the V RFprove algorithm. The V RFhash algorithm is
defined in such a way that it can be deterministically ob-
tained directly from the proof value pi by using the func-
tion V RFproof to hash. This means that the V RFhash al-
gorithm is defined as follows:

V RFhash(SK,alpha) = V RFproof to hash(V RFprove(SK,alpha))

After the proof pi and hash beta are generated, VRF
worker prepares a fulfillment transaction and submits it to
job queue connected to the VRF Reporter.

4.2.2 Request-Response

The Orakl Network Request-Response can be
fulfilled by any oracle registered inside of
RequestResponseCoordinator contract. This
unrestricted approach incentivizes off-chain oracles to
respond to requests swiftly in order to receive reward
for their service. The quality of responses is curated by
allowing to participate only a limited set of trustworthy
off-chain oracles.

The lifecycle of Request-Response Worker starts after it
receives a request captured by the Request-Response Lis-
tener. The worker deserializes encoded request, and at-
tempts to access the API server specified in the request
metadata. If the server does not respond, the worker stores

4

Data Type Aggregation Conditions
int256 Median for int256 numResponse ≤ numOperator/2
uint128 Median for int256 numResponse ≤ numOperator/2
boolean Majority Voting (numResponse ≤ numOperator/2) ∧ (numResponse mod 2 ̸= 0)
bytes32 support for single response only
bytes support for single response only
string support for single response only

Table 1. Orakl Network Request-Response supported data types and aggregation conditions

the response error code for consumer to see, and does not
continue in request processing. If the server responds suc-
cessfully, the worker applies postprocessing functions to the
server response. The currently supported postprocessing
functions are as follows:

• path - list of keys for walk through input JSON

• index - access n-th item in the input list

• mul - multiply input with arbitrary number

• div - divide input with arbitrary number

• pow10 - compute a power of 10 from input

• round - apply a round operation on input

If any of the postprocessing functions fail, the worker
terminates the request processing, and stores the error for
consumer to see. After all postprocessing function are suc-
cessfully applied, the worker prepares a transaction pay-
load. The function selector is determined by the expected
response value data type from request metadata, and the
submission value is the output of the last postprocessing
function. Eventually, the worker passes the transaction pay-
load to the Request-Response Reporter, and waits for an-
other job from the Request-Response Listener.

4.2.3 Data Feed

The design of Data Feed Worker is more complex com-
pared to VRF and Request-Response workers. The worker
perpetually listens to various data streams for every data
feed it supports, and computes their aggregates. We do not
decide for oracles which data sources to use, but we pre-
pared a recommended set for every supported data feed at
https://config.orakl.network.

There are two main processes inside of the Data Feed
Worker: heartbeat and deviation. They interact with each
other indirectly through the Aggregator contract, and
maintain a synchronization between all oracles and their on-
chain submissions.

The heartbeat process is regulated by a unique heartbeat
parameter for each data feed configuration. This parame-
ter sets the maximum allowable submission delay follow-
ing the completion of the last round. The oracle monitors
the latest submission time and submits the most recent ag-
gregate once the heartbeat delay has elapsed.

The deviation process is controlled by relative and abso-
lute threshold parameters that can be configured for every
data feed individually. As the oracle is aware of all devia-
tions in data streams, it can promptly respond and submit
the updated information when the data changes beyond a
predefined relative threshold. Some of the data feeds have
a lower bound of 0 value. An absolute threshold parame-
ter is employed to determine whether a significant positive
change occurred after the value has reached the minimum.
Similar to the relative threshold, once the absolute threshold
is reached, the oracle submits the most recent aggregate to
the chain.

The Data Feed Worker receives information about new
round openings through the Data Feed Listener, and every
submissions is executed by the Data Feed Reporter.

4.3. Service chain

Service chain is Klaytn’s solution to a scaling problem,
which is commonly called L2 solution. It is designed for
web3 developers who need high TPS, minimal transaction
fees, or data privacy. Service chain solution can be used to
build its own ecosystem inside of Klaytn realm, or create
single-purpose web3 applications.

One of the design goals of the Orakl Network was to cre-
ate a blockchain oracle from which whole Klaytn ecosystem
can benefit and not only Klaytn mainnet. We designed a so-
lution (figure 3) which allows for an easy on-boarding of
new service chains and has minimal impact on Orakl Net-
work solution for mainnet. The following sections describe
additional smart contracts (section 4.3.1 and 4.3.2) and off-
chain components are described at section 4.3.3.

4.3.1 Registry

The Orakl Network Registry is a singleton smart contract on
Klaytn mainnet that holds information about service chains

5

https://config.orakl.network

Figure 3. Orakl Network integration with service chains

and consumer accounts that want to utilize Orakl Network.
To get access to Orakl Network, service chain owners must
be registered to registry. The registration process is di-
vided into two steps: proposal, and approval. The
proposal includes service chain metadata that are verified
and approved if everything is correct. Proposal metadata is
composed of chain identifier, public JSON-RPC endpoint
and address of Orakl Network Endpoint (details at follow-
ing section 4.3.2) on service chain.

Orakl Network VRF and Orakl Network Request-
Response are paid services and in order to use them, one
must create a permanent account on mainnet and register it
within the registry. The account owner can be either the ser-
vice chain owner herself, or the consumer which requests an
oracle service from a service chain.

4.3.2 Endpoint

Endpoint represents an interface for communication be-
tween the mainnet and a service chain. Service chain owner
is responsible for deploying Endpoint smart contract on
service chain, and for registration of endpoint address to the
Orakl Network Registry on mainnet (described at section
4.3.1).

Consumers that want to use Orakl Network VRF or
Orakl Network Request-Response, issue their request from
service chain to the local endpoint which emits an event
containing service request details. The service request de-
tails are safely and reliably transferred to mainnet’s end-
point using Orakl Network Interchain Message Protocol
(details at 4.3.3). Upon receiving the message at the main-
net’s endpoint, request is relayed to appropriate Orakl Net-
work service on behalf of service chain consumer. The pay-
ment for Orakl Network service is facilitated through per-
manent account (described at section 4.1.1) located on the
mainnet. Service chain owner can either subsidize all re-
quests that come from the service owner’s chain, or con-
sumers can create their own accounts and register them
within the Orakl Network Registry. The permanent account

has to be created prior to service request and must have
balance high enough to pay for requested service. After
the permanent account is created, and sufficient amount of
$KLAY is deposited, account owner must add the address
of mainnet Endpoint to the set of account consumers that
can apply for Orakl Network services via that account. De-
pending on the service chain rules, mainnet’s endpoint de-
termines the appropriate account when requesting for a ser-
vice. Request is processed off-chain, and oracle response
is delivered to the mainnet endpoint. The mainnet endpoint
creates a message event that contains oracle fulfillment de-
tails. Then, Orakl Network Interchain Message Protocol
transfers the message from mainnet endpoint to the ser-
vice chain endpoint that requested for a service. Finally,
the service chain endpoint submits Orakl Network response
to consumer smart contract where the service request origi-
nated.

4.3.3 Interchain Message Protocol

5. Conclusion

This paper introduced Orakl Network, a highly cus-
tomizable blockchain oracle solution for EVM-compatible
chains. We explained the importance of oracles for web3
applications, how lack of them leads to industry monop-
olization, and how it lowers a web3 application security
when builders are forced to create and maintain their own
oracles. We described in detail how the current design and
implementation of the Orakl Network is tailored to Klaytn
ecosystem. The paper proposed an integration between
mainnet blockchain oracle and interchain message protocol
to expand blockchain oracle support beyond the mainnet.

As part of our future work, we intend to strengthen
our foothold in modularized on-chain and off-chain compo-
nents. We believe that this will make Orakl Network more
competitive and help Orakl Network to enter blockchain
ecosystems with already established oracle players.

Disclaimer

The Orakl Network is under active development, and
some information in this paper might be outdated. To
learn about the latest updates and development, please visit
https://orakl.network.

References
[1] Carsten Bormann and Paul E. Hoffman. Concise Binary Ob-

ject Representation (CBOR). RFC 8949, Dec. 2020. 3
[2] Lorenz Breidenbach, Christian Cachin, Alex Coventry, Steve

Ellis, Ari Juels, Benedict Chan, Farinaz Koushanfar, Daniel
Moroz, Florian Tramer, Andrew Miller, Sergey Nazarov,
Brendan Magauran, Alexandru Topliceanu, and Fan Zhang.

6

https://orakl.network

Chainlink 2.0: Next Steps in the Evolution of Decen-
tralized Oracle Networks. https://chain.link/
whitepaper, 2021. 2

[3] Adán Sánchez de Pedro, Daniele Levi, and Luis Iván Cuende.
Witnet: A decentralized oracle network protocol. https:
//witnet.io/witnet-whitepaper.pdf, 2017. 2

[4] Sharon Goldberg, Leonid Reyzin, Dimitrios Papadopoulos,
and Jan Včelák. Verifiable Random Functions (VRFs).
https://datatracker.ietf.org/doc/draft-
irtf-cfrg-vrf/10/, 2022. Work in Progress. 3

[5] Supra Research. Supra vrf service. https : / /
supraoracles.com/docs/SupraOracles-VRF-
Service-Whitepaper.pdf. 2

[6] Supra Research. Dora: Distributed oracle agree-
ment. https : / / supraoracles . com / docs /
SupraOracles-DORA-Whitepaper.pdf, 2023. 2

7

https://chain.link/whitepaper
https://chain.link/whitepaper
https://witnet.io/witnet-whitepaper.pdf
https://witnet.io/witnet-whitepaper.pdf
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vrf/10/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vrf/10/
https://supraoracles.com/docs/SupraOracles-VRF-Service-Whitepaper.pdf
https://supraoracles.com/docs/SupraOracles-VRF-Service-Whitepaper.pdf
https://supraoracles.com/docs/SupraOracles-VRF-Service-Whitepaper.pdf
https://supraoracles.com/docs/SupraOracles-DORA-Whitepaper.pdf
https://supraoracles.com/docs/SupraOracles-DORA-Whitepaper.pdf

	. Introduction
	. Background
	. Related work

	. Terminology
	. Design
	. On-chain components
	Payments
	Verifiable Random Function
	Request-Response
	Data Feed

	. Off-chain components
	Verifiable Random Function
	Request-Response
	Data Feed

	. Service chain
	Registry
	Endpoint
	Interchain Message Protocol

	. Conclusion

